











Parma - 29 Maggio 2013

Fermacell gessofibra: evoluzione del sistema a secco

**Emanuele Rotta** 







#### Il sistema a secco nella storia



Amesbury, Stonehenge 2000 A.C.



Partenone, VI sec A.C. Sistema trilitico

#### Il sistema a secco nel tempo ha mutato materiali e spessori!

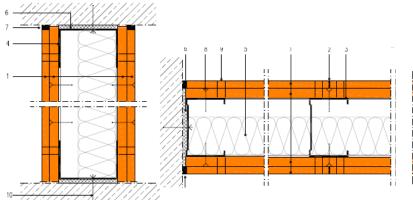


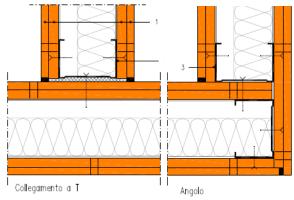
Trulli, altopiano pugliese della Murgia, XVI sec.



Londra, Crystal Palace. 1851 Padiglione che ospitava l'Esposizione Universale




# A ciascun materiale una funzione: il sistema S/R


### <u>fermacell</u>°

## FERMACELL Parete divisoria 1 S 41-I Rappresentazione schematica

1. FERMACELL lastre in gessofibra sp. 12,5 mm + 10 mm

- 2. Giunto incollato o stuccato
- Montante a C
- 4. Guida a U
- 5. Materassino isolante
- 6. Strisce di lana minerale o nastro monovinilico adesivo
- Fuga con stucco per giunti FERMACELL e nastro di separazione o con sigillante elastico
- 8. FERMACELL vite autofilettante 3,9 x 30 mm
- Graffe
- 10. Tassello metallico o in nylon

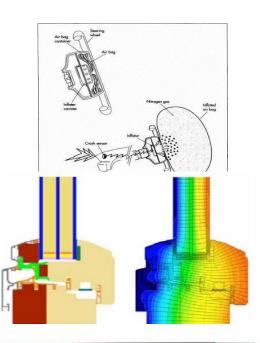













#### ...perchè scegliere il sistema a secco

















"Chi segue altri, non li va mai inanzi, et io al certo non mi sarei posto a questa professione col fine di esser solo copista"

Francesco Borromini (1599 – 1667)





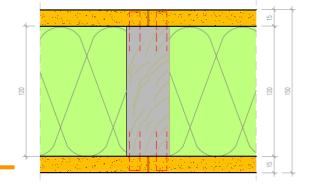
### il sistema a secco in gessofibra Fermacell



Februar 2008 Februar 2009










# Edificio per uffici sede Juwi Holding AG







- orditura portante in legno
- pannello LR 120mm,30kg/m³
- lastre in gessofibra FERMACELL 15 mm su entrambi i lati

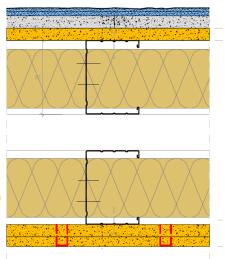
Resistenza al fuoco: REI 60

Spessore complessivo: 150 mm

Peso 48 kg/m<sup>2</sup>

Resistenza ai carichi sospesi nelle zone libere da montanti: 30 kg con vite - 55 kg con tassello da vuoto








### Istituto De La Salle Parma







- orditura metallica doppia
- pannelli isolanti in lana di roccia e fibra di legno
- lastre in gessofibra
   FERMACELL 12,5+10 mm
   all'interno e lastre
   cementizie Powerpanel H<sub>2</sub>O
   all'esterno



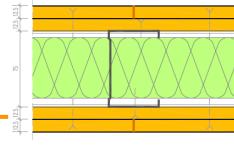
- orditura metallica doppia
- pannello LR
   60mm,60kg/m³
   40mm,40kg/m³
- lastre in gessofibra
   FERMACELL 12,5 mm su entrambi i lati e 10+10 mm nell'interno

Potere fonoisolante: Rw = 65 dB

Spessore complessivo: 175 mm

Peso: 64 kg/m<sup>2</sup>




"Si educa con l'esempio"



### Istituto De La Salle Parma







- orditura metallica
- pannello LR60mm,40kg/m³
- lastre in gessofibra
   FERMACELL 12,5+10 mm su entrambi i lati

Potere fonoisolante: Rw = 62 dB

Spessore complessivo: 120 mm

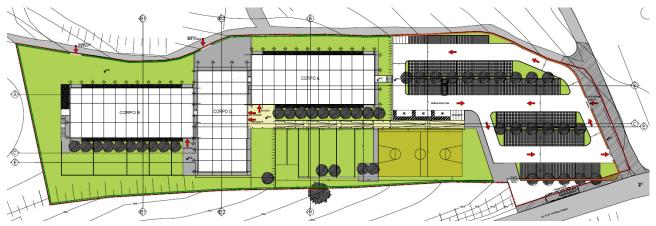
Peso: 60 kg/m<sup>2</sup>

Resistenza ai carichi sospesi nelle zone libere da montanti:

35 kg con vite - 60 kg con tassello

















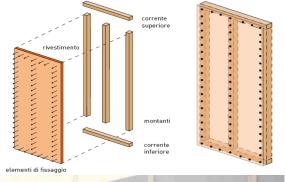











## Residenza universitaria: 87giorni, apertura per l'anno accademico 2009/2010

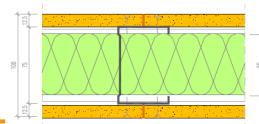




Le pareti interne sono composte da una struttura in abete massiccio e/o metallo, interposto materassino di lana di roccia e lastre in gessofibra a chiusura come elemento strutturale di controventamento e di protezione al fuoco. Gli impianti elettrico e di adduzione dell'acqua passano all'interno delle pareti.


















- orditura metallica
- pannello LR 60mm,30kg/m³
- lastre in gessofibra FERMACELL12,5 mm su entrambi i lati

Potere fonoisolante Rw = 54 dB

Spessore complessivo: 100 mm

Peso 36 kg/m<sup>2</sup>

Resistenza ai carichi sospesi nelle zone libere da montanti:

kg con vite - 50 kg con tassello da vuoto

- lastre da sottofondo
   FERMACELL 25 mm
- pannello isolante con impianto di riscaldamento integrato
- cartone a nido d'ape e granulato pesante FERMACELL



#### **Fermacell Gessofibra**



**GESSO** 

**CELLULOSA** 

**ACQUA** 

= Fermacell Gessofibra











•IBR Istituito per la biologia edile di Rosenheim (D)



Partner Sentinel-Haus



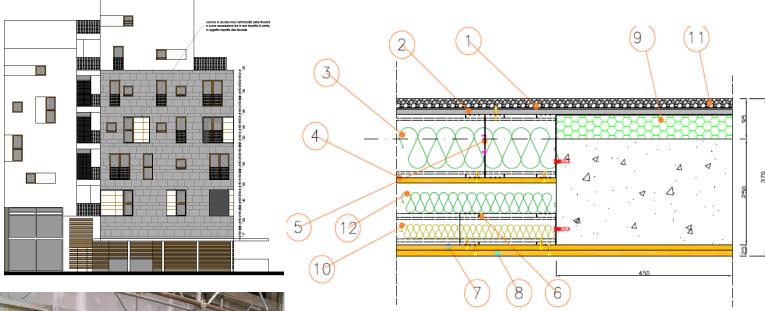
•Eco Institute di Colonia per la bioedilizia,



Competizione Dubai Big 5
 Gaia 2008 per
 l'ecocompatibilità del prodotto



•IBO Istituto austriaco per l'ecologia e le costruzioni in bioedilizia




 classificazione VOC secondo standard francese 311-2011



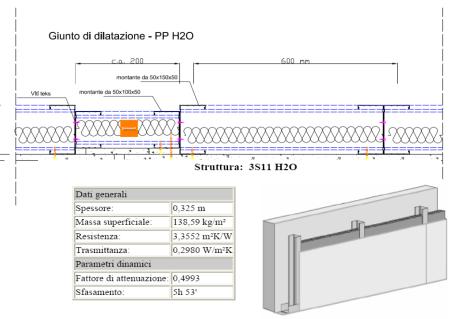


#### Edificio residenziale 5piani – Milano



- 1) Fermacell Malta leggera HD (In corrispondenza del giunti verticali e orizzontali)
- 2) Fermacell lastra cementizia Powerpanel H2O sp 12,5mm
- 3) lana di roccia spessore 120 mm densità150 kg/m3
- 4) Fermacell lastra in gessofibra Greenline sp 12,5mm
- 5) Profili in acciaio zincato per esterni doppi 40x150x40 passo 30cm doppi. (M sp  $\frac{6}{10}$ ; G sp  $\frac{10}{10}$ ) in  $\frac{10}{10}$  (M sp  $\frac{6}{10}$ ) in  $\frac{10}{10}$
- 6) Profill in accialo zincato 40x75x40 passo 40 cm (M e G sp %10)
- 7) Fermacell lastra In gessoflbra Vapor sp 12,5mm (sd > 3mt)
- 8) Fermacell lastra in gessofibra Greenline sp 10mm
- 9) Isolante per correzione ponti termici (pannello in XPS)
- 10) lana dl roccla spessore 40mm densità 40 kg/m3
- 11) Rivestimento lapideo 20mm
- 12) lana di roccia spessore 60 mm densità 40 kg/m3






### Riqualificazione facciata – Verbania









|   | Tipo di<br>materiale | Materiale                           | Spessore<br>[m] | Massa<br>Superficiale<br>[kg/m²] | Resistenza<br>[m²K/W] | Spessore<br>equivalente<br>d'aria [m] |
|---|----------------------|-------------------------------------|-----------------|----------------------------------|-----------------------|---------------------------------------|
|   |                      | Superficie esterna                  |                 |                                  | 0,0400                |                                       |
| 1 | INT                  | Malta di cemento                    | 0,006           | 12,00                            | 0,0043                | 0,180                                 |
| 2 | UTE                  | Fermacell Powerpanel H2O            | 0,013           | 13,00                            | 0,0700                | 0,700                                 |
| 3 | UTE                  | BAC CF N Roofine                    | 0,100           | 8,00                             | 2,5641                | 0,110                                 |
| 4 | INA                  | Camera non ventilata                | 0,070           | 0,07                             | 0,1833                | 0,070                                 |
| 5 | IMP                  | Foglio in P.E. sp.1.6 mm.           | 0,002           | 1,52                             | 0,0107                | 240,000                               |
| 6 | MUR                  | Laterizi forati sp.12 cm.rif.1.1.21 | 0,120           | 86,00                            | 0,3100                | 0,600                                 |
| 7 | INT                  | Intonaco di gesso puro              | 0,015           | 18,00                            | 0,0429                | 0,150                                 |
|   |                      | Superficie interna                  |                 |                                  | 0,1300                |                                       |

| Provincia:    | VERBANIA |
|---------------|----------|
| Comune:       | VERBANIA |
| Gradi giorno: | 2426     |
| Zona:         | E        |

| rasmittanza massima:                    | 0,34 W/m <sup>2</sup> K   |  |  |  |  |  |
|-----------------------------------------|---------------------------|--|--|--|--|--|
| rasmittanza della struttura:            | 0,2980 W/m <sup>2</sup> K |  |  |  |  |  |
| truttura regolamentare secondo DLGS 311 |                           |  |  |  |  |  |





#### Soluzioni Fermacell







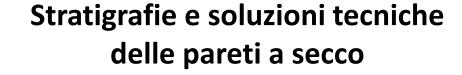
Paratico (BS) – Rubner Haus



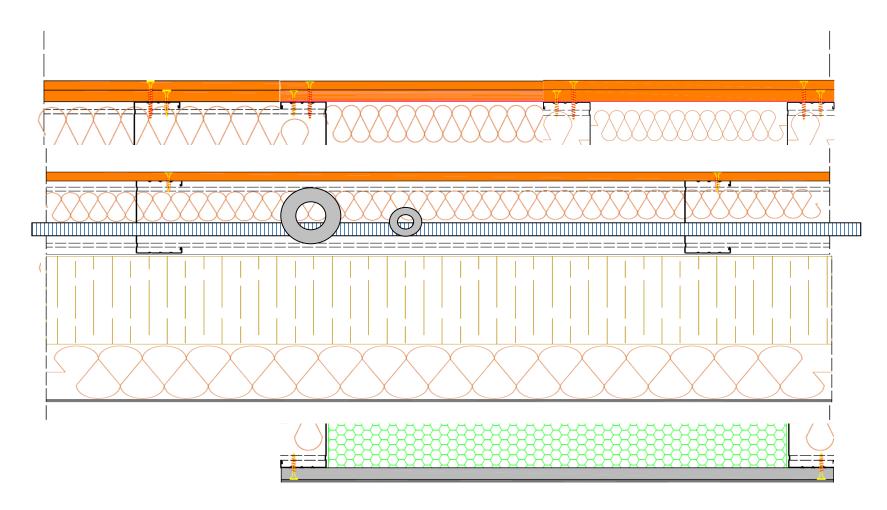

Lastre Cementizie Powerpanel H<sub>2</sub>O e HD



Lastre Gessofibra Vapor




Lastre Gessofibra greenline



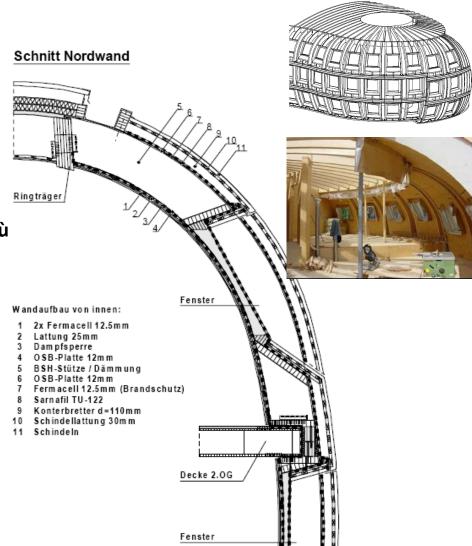

Lastre Gessofibra per sottofondi a secco












## Sistemi costruttivi a secco (S/R) in gessofibra Fermacell



#### Vantaggi:

- alto livello di prefabbricazione
- tempo dimezzato di realizzazione (comporta l'anticipata entrata in redditto della realizzazione).
- flessibilità a modularità
- peso leggero (strutture portanti più snelle)
- sistema a secco (no acqua, no asciugatura, più pulizia)
- alto potenziale di risparmio energetico
- performance prestazionali elevate per isolamento termico, acustica e resistenza al fuoco
- spessore limitato = più spazio interno
- manutenzione e gestione più semplice e pulita
- supporto tecnico







Grazie



Ing. Emanuele Rotta - emanuele.rotta@xella.com - www.fermacell.it